Home » Search results for 'enterprise control'

Search Results for: enterprise control

Journal Paper Accepted at IEEE Transactions on Industrial Electronics: An Enterprise Control Assessment Method for Variable Energy Resource Induced Power System Imbalances. Part 2: : Parametric Sensitivity Analysis

We are happy to announce that our recent paper entitled: “An Enterprise Control Assessment Method for Variable Energy Resource Induced Power System Imbalances. Part 2: Parametric Sensitivity Analysis”, has been accepted to IEEE Transaction on Industrial Electronics. The paper is authored by Aramazd Muzhikyan, Prof. Amro M. Farid and Prof. Youcef Kamal-Toumi.

The variable and uncertain nature of the variable energy resources (VER) introduces new challenges to the balancing operations, contributing to the power system imbalances. To assess the impact of VER integration on power system operations, similar statistical methods have been used by renewable energy integration studies. The calculations are based on either the net load variability or the forecast error, and use the experience of power system operations. However, variability and forecast error are two distinguishing factors of VER and both should be taken into consideration when making assessments.

This paper uses the methodology from the prequel to systematically study the VER impact on power system load following, ramping and regulation reserve requirements. While often ignored, the available ramping reserve reflects the generation flexibility and is particularly important in the presence of VER variability. This provides a detailed insight into the mechanisms by which the need for additional reserves emerges. The concept of enterprise control allows studying the impact of power system temporal parameters as well as net load variability and forecast error holistically.

The application of an enterprise control assessment framework allows the empirical identification of the most influential parameters different types of resource requirements. The inclusion of the power system temporal parameters, such as day-ahead market (SCUC) and real-time market (SCED) time steps, is a particularly distinguishing feature of the work. Use of the case-independent methodology allows generalization of the results and prediction of how the system resource requirements change when one of the parameters varies. Moreover, the results reveal the degree of importance of each lever for the power system reliable operations which is crucial for the strategic planning of the grid modernization.

errDAImpactResSTD scedImpactRegSTD

A full reference list of smart grid research at LIINES can be found on the LIINES publication page: http://engineering.dartmouth.edu/liines
WhiteLogo2

Journal Paper Accepted at IEEE Transactions on Industrial Electronics: An Enterprise Control Assessment Method for Variable Energy Resource Induced Power System Imbalances. Part 1: Methodology

We are happy to announce that our recent paper entitled: “An Enterprise Control Assessment Method for Variable Energy Resource Induced Power System Imbalances. Part 1: Methodology”, has been accepted to IEEE Transaction on Industrial Electronics. The paper is authored by Aramazd Muzhikyan, Prof. Amro M. Farid and Prof. Youcef Kamal-Toumi.

In recent years, the impact of variable energy resource (VER) integration on power system operations has been studied extensively. While most of the studies agree that VER integration creates a need for additional resources to maintain reliable power system operations, they often fail to give exact assessments due to their methodological limitations. First, a majority of these studies are performed for specific cases and the results obtained cannot be generalized. Moreover, most of these studies are focused on a single control function of power system operations which restricts the scope of the results to that time scale and neglects the coupling between different time scales. Furthermore, most of the results are obtained by statistical calculations, but not validated by numerical simulations. Finally, many of the calculations rely on the experience of system operators which may not necessarily remain valid as the power system continues to evolve.

This newly published paper proposes an enterprise control assessment method for VER integrated power systems. The power system operations are modeled as a three-layer hierarchy. The model integrates resource scheduling, a balancing layer and a regulation layers, which capture most of the balancing operation functionality found in traditional power systems. Such integration allows the study of the coupling between different timescales of power system operations which would be neglected otherwise.

enterprise

Another important aspect of this methodology is that integration of power system operation layers also guarantees that the obtained results can be generalized for different cases. To achieve this, some modifications of the traditional power system control actions are performed. The validation of the methodology demonstrates that in the absence of these modifications the simulations lead to unreasonable results for some scenarios.

A full reference list of smart grid research at LIINES can be found on the LIINES publication page: http://engineering.dartmouth.edu/liines
WhiteLogo2

Prof. Amro M. Farid presents Power Grid Enterprise Control paper at GCC CIGRE 2013

In recent months, we at the Laboratory for Intelligent Integrated Networks of Engineering Systems have been arguing for “Enterprise Control” in support of the future developments of the electricity grid.  In other words, the power grid’s primary, secondary and tertiary control must be addressed simultaneously to achieve both reliability as well as economic objectives.  These arguments have been presented in various forums.  The most recent of these is an extensive literature review entitled “The Need for Holistic Assessment Methods for the Future Electricity Grid” authored by Prof. Amro M. Farid and Dr. Aramazd Muzhikyan.   Prof. Farid presented this work at the 2013 GCC CIGRE conference held in Abu Dhabi on November 18-20.

Full text of the paper and related work may be found through the LIINES Website  under paper code [EWN-C08] :  http://amfarid.scripts.mit.edu publications page.


WhiteLogo2

LIINES Websitehttp://amfarid.scripts.mit.edu

IEEE Spectrum Features LIINES Research on Power Grid Enterprise Control Systems

Following the recent publication of the 2013 September Edition of the IEEE Smart Grid Newsletter where Prof. Amro M. Farid advocates the concept of power grid enterprise control, the IEEE Spectrum Magazine has also promoted the concept amongst its readership.  There, Bill Sweet discusses Power Grid Enterprise Control in the context of “Completely Self-Controlled Power Systems“.

Further publication on the topic can be found on the LIINES Website under the Smart Power Grids research page.

WhiteLogo2

LIINES Websitehttp://amfarid.scripts.mit.edu

LIINES Research on Power Grid Enterprise Control Systems Featured in IEEE Smart Grid Newsletter

Since the inception of LIINES, research in smart power grids has been a fundamental theme.  One important concept advocated by this work is power grid enterprise control; where the multiple layers of power operations and control are assessed and designed not just individually but together in a holistic fashion.  In the 2013 September Edition of the IEEE Smart Grid Newsletter, Prof. Amro M. Farid continues his advocacy of Power Grid Enterprise control.

Further publication on the topic can be found on the LIINES Website under the Smart Power Grids research page.

WhiteLogo2

LIINES Websitehttp://amfarid.scripts.mit.edu

Journal Paper Accepted at Springer’s Intelligent Industrial Systems Journal: Multi-Agent System Design Principles for Resilient Coordination & Control of Future Power Systems

The LIINES is pleased to announce the acceptance of the paper: “Multi-Agent System Design Principles for Resilient Coordination & Control of Future Power Systems” in Springer’s Intelligent Industrial Systems Journal. The paper is authored by Amro M. Farid and was published online at May 28th 2015.

Recently, the vision of academia and industry has converged, defining future power system as intelligent, responsive, dynamic, adaptive, and flexible. This vision emphasizes the importance of resilience as a “smart grid” property. It’s implementation remains as a cyber-physical grand challenge.

Power grid resilience allows healthy regions to continue normal operation while disrupted or perturbed regions bring themselves back to normal operation. Previous literature has sought to achieve resilience with microgrids capable of islanded operation enabled by distributed renewable energy resources. These two factors require a holistic approach to managing a power system’s complex dynamics. In our recent work (e.g. link 1 and link 2), we have proposed as means of integrating a power system’s multiple layers of control into a single hierarchical control structure.

In addition to enterprise control, it is important to recognize that resilience requires controllers to be available even if parts of the power grid are disrupted. Therefore, distributed control systems, and more specifically Multi-Agent Systems have often been proposed as the key technology for implementing resilient control systems. Multi-agent systems are commonly used to distribute a specific decision-making algorithm such as those in market negotiation and stability control. However, very few have sought to apply multi-agent systems to achieve a resilient power system.

The purpose of the paper entitled “Multi-Agent System Design Principles for Resilient Coordination & Control of Future Power Systems” is two fold. First, it seeks to identify a set of Multi-Agent System design principles for resilient coordination and control. Second, the paper assesses the adherence of existing Multi-Agent System implementations in the literature with respect to those design principles.

The set of design principles is based on newly developed resilience measures for Large Flexible Engineering Systems. These measures use Axiomatic Design and are directly applicable to the power grid’s many types of functions and its changing structure. These design principles, when followed, guide the conception of a multi-agent system architecture to achieve greater resilience.

About the author: Wester C.H. Schoonenberg completed his B.Sc. in Systems Engineering and Policy Analysis Management at Delft University of Technology in 2014. After his bachelors’ degree, Wester started his graduate work for the LIINES at Masdar Institute, which he continues as a doctoral student at Thayer School of Engineering at Dartmouth College in 2015. Currently, Wester is working on the integrated operation of electrical grids and production systems with a special interest in Zero Carbon Emission Manufacturing Systems.

A full reference list of industrial energy management research at the LIINES can be found on the LIINES publication page:  http://engineering.dartmouth.edu/liines

WhiteLogo2

 

Journal Paper Accepted at Applied Energy Journal – Demand Side Management in a Day-Ahead Wholesale Market: A Comparison of Industrial & Social Welfare Approaches

The LIINES is pleased to announce the acceptance of the paper entitled: “Demand Side Management in a Day-Ahead Wholesale Market: A Comparison of Industrial & Social Welfare Approaches” to Applied Energy Journal for publication. The paper is authored by Bo Jiang, Prof. Amro M. Farid, and Prof. Kamal Youcef-Toumi.

The intermittent and unpredictable nature of renewable energy brings operational challenges to electrical grid reliability. The fast fluctuations in renewable energy generation require high ramping capability which must be met by dispatchable energy resources. In contrast, Demand Side management (DSM) with its ability to allow customers to adjust electricity consumption in response to market signals has been recognized as an efficient way to shape load profiles and mitigate the variable effects of renewable energy as well as to reduce system costs. However, the academic and industrial literature have taken divergent approaches to DSM implementation. While the popular approach among academia adopts a social welfare maximization formulation, defined as the net benefit from electricity consumption measured from zero, the industrial practice introduces an estimated baseline.   This baseline represents the counterfactual electricity consumption that would have occurred without DSM, and customers are compensated according to their load reduction from this predefined electricity consumption baseline.

DR

In response to the academic and industrial literature gap, our paper rigorously compares these two different approaches in a day-ahead wholesale market context. We developed models for the two methods using the same mathematical formalism and compared them analytically as well as in a test case using RTS-1996 reliability testing system. The comparison of the two models showed that a proper reconciliation of the two models might make them dispatch in fundamentally the same way, but only under very specific conditions that are rarely met in practice. While the social welfare model uses a stochastic net load composed of two terms, the industrial DSM model uses a stochastic net load composed of three terms including the additional baseline term. While very much discouraged, customers have an implicit incentive to surreptitiously inflate the administrative baseline in order to receive greater financial compensation. An artificially inflated baseline is shown to result in a higher resource dispatch and higher system costs.

The high resource scheduling due to inflated baseline likely require more control activity in subsequent layers of enterprise control including security constrained economic dispatch and regulation service layer. Future work will continue to explore the technical and economic effects of erroneous industrial baseline.

About the Author:

Bo Jiang conducted this research in collaboration with her Master’s thesis advisor Prof. Amro M. Farid and Prof. Kamal Youcef-Toumi at Massachusetts Institute of Technology. Her research interests include renewable energy integration, power system operations and optimization. Bo is now pursuing her PhD at MIT Mechanical Engineering Department.

A full reference list of Smart Power Grids and Intelligent Energy Systems research at LIINES can be found on the LIINES publication page: http://engineering.dartmouth.edu/liines

 

WhiteLogo2

 

ESM 616: Techno-Economic Analyses in Power System Operations

To start off the new semester, we have just developed a page for the ESM 616 Techno-Economic Analyses in Power System Operations class.  The subject seeks to prepare students for the new world of “smart grid” operations.  It specifically seeks to contrast conventional paradigms of power system operations and control with those that will appear in the coming decades.   Emphasis is placed on interdisciplinary, holistic approaches founded upon industrial application and mathematical rigor.  See the LIINES Blog Keywords:  ADWEA — Abu Dhabi Water & Electricity Authority, CIGRE, Control Systems Engineering, DEWA — Dubai Water & Electricity Authority, Dynamic Systems Modeling, Enterprise Control, Graph Theory, IEEE, IEEE CSS, Large Complex Systems, Model-Based Systems Engineering, Operations Research, Power System Economics

Good luck to all as we kick off the Spring Semester.

WhiteLogo2

LIINES Website: http://amfarid.scripts.mit.edu

ESM 501 Systems Architecture

To start off the new semester, we have just developed a page for the ESM 501 System Architecture class.  The subject addresses one of the first stages of system design, analysis and engineering.  Emphasis is placed on engineering systems which include technical, economic and social aspects.  This blog does often discuss subjects related to systems architecture.  See the LIINES Blog Keywords:  Axiomatic Design, Axiomatic Design for Large Flexible Systems, Design Methodologies, Enterprise Control, Graph Theory, Life Cycle Properties, Model-Based Systems Engineering, Socio-Techno-Economic Systems, and SysML.

Additionally, a new page has been added to overview our other taught courses.

Good luck to all as we kick off the Fall Semester.

WhiteLogo2

LIINES Website: http://amfarid.scripts.mit.edu

Siemens gives an IEEE PES Webinar on Microgrid Strategic Planning

As we have discussed many times, Smart Power Grids is one of the four essential research themes at the LIINES.  Our work generally advocates the concept of power grid enterprise control and a number of blogposts have been devoted to the topic.   One novel aspect of this work is the use of microgrids which may coordinate their own renewable energy but also have the potential to island themselves from the rest of the grid.  Microgrids — as the name suggests —  are relatively small and so their reliable operation requires careful attention to its design & planning.  In a sense, each generation, load, line and bus must be carefully considered.  

To that effect, we thought we’d share Siemens’ take on the subject.  Their recent IEEE PES Webinar on Microgrid Strategic Planning has recently been put up on youtube.

https://www.youtube.com/watch?v=ZWXt9v1JTA0

Full text of our smart power grid reference papers may be found on the LIINES publication page: http://amfarid.scripts.mit.edu

WhiteLogo2

LIINES Websitehttp://amfarid.scripts.mit.edu